由于液壓技術廣泛應用了高技術成果,如自動控制技術、計算機技術、微電子技術、磨擦磨損技術、可靠性技術及新工藝和新材料,使傳統技術有了新的發展,也使液壓系統和元件的質量、水平有一定的提高。盡管如此,走向二十一世紀的液壓技術不可能有驚人的技術突破,應當主要靠現有技術的改進和擴展,不斷擴大其應用領域以滿足未來的要求。液壓機液壓技術主要的發展趨勢將集中在以下幾個方面減少能耗,充分利用能量液壓技術在將機械能轉換成壓力能及反轉換方面,已取得很大進展,但一直存在能量損耗,主要反映在系統的容積損失和機械損失上。如果全部壓力能都能得到充分利用,則將使能量轉換過程的效率得到顯著提高。
為減少壓力能的損失,必須解決下面幾個問題減少元件和系統的內部壓力損失,以減少功率損失。主要表現在改進元件內部流道的壓力損失,采用集成化回路和鑄造流道,可減少管道損失,同時還可減少漏油損失。減少或消除系統的節流損失,盡量減少非安全需要的溢流量,避免采用節流系統來調節流量和壓力。采用靜壓技術,新型密封材料,減少磨擦損失。發展小型化、輕量化、復合化、廣泛發展3通徑、4通徑電磁閥以及低功率電磁閥。
改善液壓系統性能,采用負荷傳感系統,二次調節系統和采用蓄能器回路。為及時維護液壓系統,防止污染對系統壽命和可靠性造成影響,必須發展新的污染檢測方法,對污染進行在線測量,要及時調整,不允許滯后,以免由于處理不及時而造成損失。主動維護液壓系統維護已從過去簡單的故障拆修,發展到故障預測,即發現故障苗頭時,預先進行維修,清除故障隱患,避免設備惡性事故的發展。
液壓機所用的工作介質的作用不僅是傳遞壓強,而且保證機器工作部件工作靈敏、可靠、壽命長和泄漏少。液壓機對工作介質的基本要求是:有適宜的流動性和低的可壓縮性,以提高傳動的效率;能防銹蝕;有好的潤滑性能;易于密封;性能穩定,長期工作而不變質。液壓機剛開始是用水作為工作介質,以后改用在水中加入少量乳化油而成的乳化液,以增加潤滑性和減少銹蝕。
液壓機的結構驅動系統液壓機的驅動系統主要有泵直接驅動和泵-蓄能器驅動兩種型式。泵直接驅動 這種驅動驅動系統系統的泵向液壓缸提供高壓工作液體,配流閥用來改變供液方向,溢流閥用來調節系統的限定壓強,同時起安全溢流作用。這種驅動系統環節少,結構簡單,壓強能按所需的工作力自動增減,減少了電能消耗,但須由液壓機的大工作力和高工作速度來決定泵及其驅動電機的容量。這種型式的驅動系統多用于中小型液壓機,也有用泵直接驅動的大型(如120000千牛)自由鍛造水壓機。泵-蓄能器驅動 在這種驅動系統中有一個或一組蓄能器。當泵所供給的高壓工作液有余量時,由蓄能器儲存;而當供給量不足于需要時,便由蓄能器補充供給。采用這種系統可以按高壓工作液的平均用量選用泵和電動機的容量,但因為工作液的壓強是恒定的,電能消耗量較大,并且系統的環節多,結構比較復雜。這種驅動系統多用于大型液壓機,或者用一套驅動系統驅動數臺液壓機。結構型式按作用力的方向區分,液壓機有立式和臥式兩種。多數液壓機為立式,擠壓用液結構壓機則多用臥式。按結構型式分,液壓機有雙柱、四柱、八柱、焊接框架和多層鋼帶纏繞框架等型式,中、小型立式液壓機還有用C型架式的。